
TREXMO plus: an advanced self-learning model for occupational 
exposure assessment

Nenad Savic1, Eun Gyung Lee2, Bojan Gasic3, David Vernez1

1Center for Primary Care and Public Health (Unisanté), University of Lausanne, Route de la 
Corniche 2, CH-1066 Epalinges-Lausanne, Switzerland 2Health Effects Laboratory Division 
(HELD), Exposure Assessment Branch (EAB), National Institute for Occupational Safety and 
Health (NIOSH), 1095 Willowdale Road, Morgantown, WV 26505, USA 3Chemicals and 
Occupational Health Unit, Swiss State Secretariat for Economic Affairs (SECO), Holzikofenweg 
36, CH-3003 Bern, Switzerland

Abstract

In Europe, several occupational exposure models have been developed and are recommended for 

regulatory exposure assessment. Only some information on the substance of interest (e.g., vapor 

pressure) and the workplace conditions (e.g., ventilation rate) is required in these models to predict 

an exposure value that will be later used to characterize the risk. However, it has been shown that 

models may differ in their predictions and that usually, one of the models best fits a given set of 

exposure conditions. Unfortunately, there are no clear rules on how to select the best model. In this 

study, we developed a new modeling approach that together uses the three most popular models, 

Advanced REACH Tool, Stoffenmanger, and ECETOC TRAv3, to obtain a unique exposure 

prediction. This approach is an extension of the TREXMO tool, and is called TREXMO+. 

TREXMO+ applies a machine-learning technique on a set of exposure data with the measured 

values to split them into smaller subsets, corresponding to exposure conditions sharing similar 

characteristics. For each subset, TREXMO+ then establishes a regression model with the three 

REACH tools used as the exposure predictors. The performance of the new model was tested and a 

comparison was made between the results obtained by TREXMO+ and those obtained by 

conventional tools. TREXMO+ model was found to be less biased and more accurate than the 

REACH models. Its prediction differs generally from measurements by a factor of 2–3 from 

measurements, whereas conventional models were found to differ by a factor 2–14. However, as 

the available test dataset is limited, its results will need to be confirmed by larger-scale tests.
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Introduction

In 2007, the European Union parliament adopted a new chemical regulation that concerns 

Registration, Evaluation, Authorization, and restriction of CHemicals (REACH) [1]. The 

purpose of REACH is to improve the protection of human health and the environment 

against the risk posed by chemicals. To comply with this legislation, for substances 

manufactured or imported ≥10 tons per year, registrants should conduct a Chemical Safety 

Assessment (CSA). The CSA includes risk characterization and exposure assessment based 

on the established exposure scenarios. An exposure scenario is a document describing the 

conditions that ensure adequate control of risk when a substance is used in a specific task or 

several processes or uses. These conditions defined for every step of the manufacturing, any 

anticipated use down in the supply chain, and every substance in a product. Collection of 

exposure measurements to support a CSA requires a large sampling size and high costs. The 

sampling size can be further enlarged to cover the between-and within-user variability [2]. 

Statistical exposure models, such as ECETOC TRA [3, 4], on the other hand, present a 

cheap and fast assessment alternative. Although the exposure measurements are still 

considered the gold standard and their collection should not be completely replaced [5], the 

models can discriminate between well-controlled situations and situations that may pose risk 

to the human health.

Within the context of REACH, several generic exposure models are recommended for the 

exposure assessment purposes [1]. Tier 1 models, such as EMKG-EXPO-TOOL [6], 

ECETOC TRAv2 [3], and TRAv3 [4], are simple screening tools that are supposed to predict 

more conservative (i.e., protective) estimates, as compared with higher tier tools, such as 

Advanced REACH Tool (ART) [7, 8] and Stoffenmanager (SM) [9, 10]. To calculate a tier 1 

estimate, a few exposure parameters regarding substance and workplace properties are 

required. EMKG-EXPO-TOOL, for example, uses only three parameters, i.e., volatility (for 

liquids) or dustiness band (for solids), amount of substance, and applied exposure control. 

SM and ART, however, require more exposure descriptive information to calculate estimates 

that are supposed to be more precise compared with the results of tier 1 models. ART, for 

example, besides the vapor pressure (VP) of a substance, requires its concentration and 

activity coefficient to assess how the substance properties contribute in the final exposure. 

Also, these higher tier tools provide estimates at different percentiles of the exposure 

distribution, i.e., 50th, 75th, 90th, 95th, and 99th (only ART).

A broad study, known as the eteam study [11], has extensively compared several tier 1 

models, including ECETOC TRAv2 and v3, EMKG-EXPO-TOOL, and SM (tier 1.5), with 

nearly 4000 exposure measurements [12]. The authors reported that overall, the tier 1 

models performed satisfactorily for a wider range of considered exposure situations (ESs), 

by overestimating the corresponding exposure measurement data; this was the desired 
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outcome as the tier 1 models are intended to overestimate the measurements and thus behave 

more protective. For certain exposure conditions, the study also found underestimations of 

the measured values. In another study [13], ART (the only tier 2 model of REACH) was 

compared with almost 600 measurements from Switzerland. By evaluating the fraction of 

the measurements found within the 90% confidence interval of the 50th and 90th percentiles, 

Savic et al. [13] found that ART tends to accurately predict exposures to volatile liquids and 

powders. The authors also reported that ART overestimates exposures to volatile liquids but 

underestimates exposures to powders and solids. Similarly, Lee et al. [14, 15] tested the 

performance of these models against a U.S. dataset for liquids with VP > 10 Pa and reported 

results similar to those of the eteam for the tier 1 models and SM. For ART, however, Lee et 

al. [15] found a tendency to underestimate exposure measurements. Several other studies 

also focused on the performance of these models under REACH [8, 16–18]. Most of these 

studies showed that the models could be reliable for certain ESs, but in some cases, their 

algorithms need to be improved. Nevertheless, the models’ performance remains unknown 

for a great number of ESs for which no adequate data are available. To the best of our 

knowledge, none of the published studies has established straightforward rules on which 

model is the best choice for a given set of ESs.

Furthermore, Savic et al. [19] compared, in silico, the estimates of ART, SM (version 4.0) 

[10], and TRAv3 for 300,000 combinations of exposure parameters. The authors addressed 

ESs for which the modeled exposures can differ by several orders of magnitude, indicating 

that a wrong selection of model may have serious consequences on assessment of risk. 

Because no workplace measurements were involved in the inter-model comparison [19] (i.e., 

in silico study), it was impossible to determine the actual performance of the three REACH 

models. Savic et al. [20] then introduced the usefulness of TREXMO, which promotes and 

facilitates the simultaneous use of sereval exposure models.

The purpose of this study, therefore, was to develop a new modeling approach that combines 

the exposure outputs of three existing REACH models to derive a refined prediction. The 

three inhalation models used as the exposure predictors in our model were ART, SM 

(version 4.0) [10], and TRAv3. We developed an algorithm that adjusts its prediction 

coefficients depending on the evaluated exposure conditions. This means that the model will 

use available exposure data to learn about the models’ weaknesses and strengths for different 

ESs. Whenever new exposure data are supplied to the model, it will perform a self-

refinement of its prediction coefficients. We hypothesized that this new approach, compared 

with the three REACH models, would perform better in terms of bias and accuracy with an 

assumption that those three models were developed using different and independent 

exposure data. To calculate its estimates, TREXMO+ will only use indirectly the data on 

which the three models are based. Depending on how similar is a given exposure situation 

with the data in these three models, the new model will assign them different prediction 

coefficients.
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Methods

TREXMO

TREXMO [20], an integrated tool of six exposure models, i.e., ART, SM, ECETOC TRAv3, 

MEASE, EMKG-EXPO-TOOL, and EASE, is designed to predict estimates of the six 

models simultaneously. By starting from a set of the parameters established in one of the 

models (preferably ART), TREXMO recommends the most appropriate parameters in the 

other five. For a given ES, six exposure predictions can thus be provided from a single 

parameter set. TREXMO v2, however, neither provides its own estimates nor recommends 

which of the six predictions could be the most suitable, regarding a given ES, for the risk 

characterization. Detailed information is provided in Savic et al. [20].

TREXMO+

This is an advanced model developed based on the inter-model translations established for 

TREXMO. It was consequently named TREXMO+. This new model is intended to derive its 

exposure estimates by using three REACH models, i.e., ART, SM, and TRAv3, as its 

independent predictors. The remaining three models of TREXMO were not considered in 

this study because of the following reasons:

MEASE. Regarding the inhalation exposure, the model predicts the values similar to those 

of TRAv3. Its contribution in TREXMO+ was thus not expected to improve the 

performance.

EMKG-EXPO-TOOL and EASE. These two models are conceptually much simpler 

compared with the three considered once. Also, they do not predict the point value 

estimates, but the range. Moreover, EASE was used as a basis for the development of 

ECETOC TRA and it can thus be expected that the exposure data, on which the two models 

are based, is mostly overlapped.

TREXMO+ concept

For both ART and SM, the 50th percentile estimates of the exposure distribution is the direct 

output of their calibrations against the exposure measurements [8, 10]. According to the 

ECETOC’s technical guidance [4], the exposure estimates in TRAv3 are considered to 

represent the 75th percentile estimate of the exposure distribution. Because neither the 

model calculations nor the supporting material provides a way to obtain the 50th percentile, 

the 75th percentile estimate was used here. For the model developed in this study, which 

predicts the geometric mean (GM), the choice of the percentiles of the three REACH models 

was not crucial, because these models are used only as predictors of the exposure. This is 

explained in detail next.

To predict exposure estimates of the three REACH models, appropriate exposure parameters 

(such as VP and activity task) must be coded for the given models. To automatize this step, 

we integrated the parameter translation rules of TREXMO [20] into our model. ART was 

used as the starting model as recommended by Savic et al. [20]. Since some input 

parameters in ART can be translated into multiple ways (especially for PROC and type of 

Savic et al. Page 4

J Expo Sci Environ Epidemiol. Author manuscript; available in PMC 2020 August 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



use in TRAv3) and thus lead to different exposure estimates, TREXMO+ for these cases is 

programmed to require additional expert judgments. Fortunately, the data (Table 2) that were 

used in our study included a PROC value for each ES. For a smaller fraction of ESs, 

professional use (i.e., more conservative option) was selected to represent the type of use for 

TRAv3, since the corresponding information was missing.

The structure of TREXMO+ is shown in Fig. 1a. The algorithm consists of three layers: (1) 

classification, (2) learning, and (3) assessment.

Classification layer—Exposure data containing the exposure parameters coded for ART 

(+PROC/TRAv3 per ES) are supplied to this layer. This database must not include exposure 

data that were used to calibrate any of ART, SM, or TRAv3. Exposure data from two 

different sources were available for the purpose of this study.

The classification layer is designed to split the supplied data into similarly exposed groups 

with the addressed exposure conditions. To classify the data, we used a conditional inference 

regression tree (RT) [21]. This is a machine-learning (ML) method [22] that constructs a 

tree-like structure from a dataset containing a continuous dependent variable (such as 

exposure measurement data). The method has been explained in detail by Strasser and 

Weber [21]. A brief explanation is provided in the next paragraph. In this study, the RT 

algorithm was used only to classify the exposure dataset into smaller subsets and not to 

derive a prediction algorithm. For each subset of the data obtained by using the RT, the 

corresponding prediction coefficients are established in the next, learning, layer of 

TREXMO+.

Figure 1b illustrates an example of the workflow of the RT algorithm. The most-top, root 

node (node 1) contains data consisting of two independent variables (x1 and x2) to 

determine a dependent (or response) variable (y) using a function of f(x1, x2). At this point, 

the response covers a wider range of possibilities between y1 and y2, shown in the bar graph 

in Fig. 1b. RT tests a null hypothesis of independence of the two (x) predictors with the 

response. As the independence measure, a p value corresponding to a given level of 

confidence (such as 95% confidence interval) was used. If the null hypothesis cannot be 

rejected, then a binary split is performed. When more splits are possible, the most 

discriminative one (with the lowest p value) is performed. In Fig. 1b, the first, most 

discriminant, binary split is found for x1 = 90 (arbitrary number used for explaining the 

logic). The data are then split in two smaller subsets; node 2 contains the records with x1 < 
90, while node 3 contains only the data with x1 ≥ 90. Compared with the root node, the 

response in these two child (internal) nodes is narrower. Every binary split results in 

narrower data and the response with smaller standard deviations. The recursive data splitting 

continues until the null hypothesis cannot be rejected. The nodes that cannot be split are leaf 

(or terminal) nodes.

In this study, the variables (as such, in Fig. 1b), for which the independence with the 

response was tested, were the exposure determinants of ART. Table 1 lists all exposure 

determinants, grouped by the principal modifying factor of ART [7]. The RT algorithm 

evaluated how significant these determinants are in predicting the measured values. Only VP 
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and concentration were used as continuous variables. It is important to keep the 

independence between the used variables. For activity emission potential, for example, the 

parameter list for underlying determinants (such as amount of product) depends on activity 

class (such as surface spraying of liquid products). These underlying determinants were thus 

not used as the variables in RT.

Learning layer—Here, TREXMO+ evaluates the regression coefficients (w) in Eq. 1 for 

each leaf node from the previous layer (see Fig. 1a). It is assumed that the performance of 

the three models (ART, SM, and TRAv3) varies less over different conditions in the leaf 

nodes, as compared with data in the root node. For each leaf node, the regression analysis in 

Eq. 1 is conducted. It uses the three models’ estimates (E) to predict the GM of 

measurements.

GM = wARTEART + wSMESM + wTRAETRA + ε (1)

For n number of leaf nodes, this layer outputs a (3 × n) matrix containing three regression 

coefficients (for ART, SM, and TRAv3) per node. These regression coefficients define how a 

given predictor (i.e., exposure model) determines the GM found in the SUVA and NIOSH 

datasets. As already mentioned, it is not crucial to know which percentile of the exposure is 

used for these three predictors. If, for example, the 90th percentile was used for SM (or 

ART), it would not change the performance of the final prediction of TREXMO+, but only 

the evaluated regression coefficient of the given model. This means that even if unitless 

predictors were used, the outcomes from Eq. 1 would be still prediction of GM in mg/m3.

Since all predictors in Eq. 1 are REACH exposure models, some collinearity could exist 

between them. To address this issue, variance inflation factor (VIF) [23, 24] was evaluated 

for each leaf node as a measure of collinearity between the predictor models. The predictors 

for which VIF was higher than five [24] was excluded from Eq. 1 and the regression 

coefficients were reevaluated for the remaining predictors. Furthermore, R-squared was 

calculated for each node to show how much of the variance is explained by using the model 

in Eq. 1.

Assessment layer—For a new ES, this layer predicts an exposure estimate. For the given 

ES, it requires a set of ART exposure parameters to be provided. Following the rules 

established by Savic et al. [20]; TREXMO+ performs the parameter translations to SM and 

TRAv3 and calculates the three estimates of the three REACH models. In the next step, 

TREXMO+ calls the RT from its first layer. Based on the provided ART parameters, the 

algorithm assigns the given ES to an appropriate leaf node. TREXMO+ then loads the 

corresponding regression coefficients from its second layer and calculates a final TREXMO

+ estimate by using Eq. 1.

Evaluation of RTs and regression coefficients

Table 2 shows the exposure data used in the classification layer of TREXMO+. The 

complete data were coded using the exposure parameters of ART. Also, a PROC and type of 

use parameter were assigned to each ES to allow the calculations in TRAv3. For the ESs 
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with more than one exposure measurement, the GM was calculated. 80% of the data was 

selected into the training set, i.e., the TREXMO+ development, while the remaining data—

the testing set— were used to test the performance of the new models (explained in the next 

section). The redistribution of exposure data into two subsets (the training set and testing 

set) was randomly conducted by iterating until an RT with the maximal possible number of 

the binary splits was achieved. Then, an RT based on the training set was established and 

compared with the RT from the previous iteration. The goal was to cover as much variance 

as possible in the training set in order to result in more binary splits. This step is especially 

important for the exposure types in which fewer data were available (that is, powders and 

solids) and a single random selection may have resulted in no splits.

The ART parameter sets (+PROC and type of use), with their corresponding GMs, were 

supplied to the classification layer of TREXMO+. One RT and one matrix holding the 

regression coefficients (w in Eq. 1) were obtained for each of the exposure types, that is, 

volatile liquids, powders, and solids.

It is important to address that the official TREXMO+ tool includes the RTs and the matrices 

holding the evaluated regression coefficients for the whole data (both training and testing 

set). The RT algorithm and the coefficient matrices were evaluated for the total data. Again, 

one RT and one matrix with these coefficients were evaluated for each exposure type, 

separately. The results are given in Figs. S1–S3 and Table S1 (see Supplementary 

Information 2).

TREXMO+ validation

For each ES, based on a given set of the exposure parameters, the third layer of TREXMO+ 

loaded the corresponding coefficients from its second layer. The TREXMO+ predictions 

were then calculated by using these coefficients with the estimates of ART, SM, and TRAv3, 

in Eq. 1.

Several statistical analyses were conducted to investigate the performance of TREXMO+ 

and to compare the results with those predicted individually from three models. Residuals 

(Eq. 2), measuring the difference between modeled (y) and individual exposure 

measurement (i.e., not GM) (y), were calculated and plotted against the measurements. 

According to Eq. 2, positive residuals mean overestimation, while negative residuals 

implicate underestimation of the measurements by the modeled predictions.

ri = logyi − logyi (2)

LOcally-WEighted Scatterplot Smoothing (LOWESS) [25] was used to present the changes 

of the residuals for different models in the same graph. LOWESS converted residual data 

points into smoothed lines.

Relative bias (Eqs. 3 and 4) and accuracy (Eq. 5) were also evaluated. Accuracy is calculated 

as mean absolute error (MAE). While the former shows how much, overall, the models 

overestimate or underestimate exposure; the latter quantifies the average distance between 

the model’s central estimate and GM of the measurements. Because the bias (Eq. 3) 
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accounts for the sign of the log-difference, it cannot be used to quantify the average distance 

between the measured and modeled values.

bias = 1
n ∑

i = 1

n
logyi − logyi (3)

relativebias = ebias  − 1 × 100% (4)

accuracy = 1
n ∑

i = 1

n
logyi − logGMi (5)

Since the ML algorithm in the classification layer of TREXMO+ can also be used to predict 

GM, the corresponding relative bias and accuracy were also evaluated.

Finally, regression parameters, slope and intercept, were calculated for TREXMO+ and its 

three predictor models. The log-estimates of each model were plotted against the log-

exposure measurements.

Software

The entire study was performed in R language and environment for statistical computing 

[26], version 3.5.0. To establish the RTs needed for the first layer of TREXMO+, ctree 
function was called from R’s party package. For the multicollinearity test, car package and 

its function vif were used. Furthermore, for the graphs in this paper, ggplot function from 

ggplot2 package [27] was used.

Results

Established RTs and regression coefficients

Figure 2 shows RTs established for the training dataset for volatile liquids (A) and powders 

(B) (Eq. 1). For solids, the exposure conditions were insufficiently different to allow for a 

statistically significant binary split. The iterative random redistribution of the ESs failed to 

result in a training set with enough variance for a binary split. Solid ESs thus remained in the 

root node, and no RT is shown for solids in Fig. 2. For liquids, three determinants—fugacity, 

activity (sub)classes, and local controls—were found to significantly affect the GM of the 

measurements. For powders, these determinants were dustiness and concentration.

Table 3 shows the calculated regression coefficients for the three REACH models and 

different nodes in Fig. 2 (w; see Eq. 1). For solids, because no RT was established, one set of 

these coefficients was obtained. A high collinearity (i.e., VIF > 5) was often found between 

ART and SM. Therefore, most of the time, only two models (e.g., ART and TRAv3 or SM 

and TRAv3) were used as predictors in Eq. 1. Finally, the found R-squared values in Table 3 

varied drastically from node to node. For liquids, for example, while the regression 

explained 86% for node 6, only 13% was explained for node 3.
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To illustrate the concept of TREXMO+, residuals with LOWESS smoothing were also 

evaluated for the training dataset. Figure 3 (the training dataset) shows how TREXMO+ 

balances its estimates by shifting it to a REACH model that locally performs best. Our 

model, however, kept the overall behavior of the three models. This is especially evident for 

liquids, where the three REACH models tend to overestimate lower exposures and 

underestimate higher exposures. Here, TREXMO+ resulted in a similar, but alleviated, trend.

Validation results

The RTs in Fig. 2 and the corresponding coefficients in Table 3 were used to calculate the 

TREXMO+ estimates for the ESs in the testing dataset.

Figure 3 (the testing dataset) shows trends in the residuals for the three REACH models and 

TREXMO+. As for the training set, the models tend to overestimate lower exposures and 

underestimate higher exposures. The TREXMO+ line is the least deviated from the central 

“zero” line. This means that the mentioned trend is alleviated for TREXMO+. It also means 

that compared with the three REACH models, the difference between the TREXMO+ 

estimates and the exposure measurements is smaller.

The results found for relative bias (Table 4) show that TREXMO+ underestimates the 

measurements (relative bias from −24 to −41%). Even lower values (relative bias from −49 

to −90) were found when the ML algorithm was used to assess the exposure. Except for 

solids, for which ART and SM were found to underestimate the exposures, the REACH 

models were found to overestimate more frequently the measurements. For powders, for 

example, the extent and the number of overestimations by ART resulted in a high relative 

bias (=1004%). Figure 3 illustrates this finding (the testing dataset); the ART’s line is above 

the central “zero” line over almost the entire domain.

For all three exposure types, TREXMO+ was the most accurate model (Table 4). This means 

that the average difference between the estimates of TREXMO+ and the calculated GM was 

the smallest. Regarding different exposure forms, this difference was found to be, on 

average, between 0.31 and 0.48. As the accuracy is expressed on the log-scale (see Eq. 5), 

the estimates of TREXMO+ are expected to be two to three times lower or higher than the 

measured GM. The second most accurate was when using only ML of TREXMO+, for 

which MAE was 0.31–0.61. Only a small difference (MAE, 0.31 vs 0.34) was found 

between TREXMO+ and ML for solids, which can be explained by the fact that the 

regression layer failed to perform binary splits for this form of exposure. Of the three 

REACH models, SM was the most accurate, with a log-difference of 0.53–0.66 (or three to 

five times GM).

Finally, the relationship between the modeled and measured exposures is shown in Fig. 4 

and Table 5. The corresponding 90% confidence interval for ART and the 90% confidence 

interval and prediction interval for TREXMO+ are also plotted in Fig. 4.

For liquids, all four models were significantly correlated with the measurements (p < 0.05). 

The variance in the measured exposure was best explained by TREXMO+ (R-squared = 

0.41). For powders, the correlation was significant only for TREXMO+, whereas SM and 
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TRAv3 were even negatively correlated with the measurements. For SM, this was also the 

case for solids (slope = −0.08). The relationship between the modeled and measured 

exposure for this exposure form was significant only for TRAv3 and TREXMO+.

Discussion

In this study report, we presented the development and validation of a new, “meta” exposure 

model, called TREXMO+. This model applies the concept of the multi-model approach of 

TREXMO [20]. By using between-model translations to calculate a refined estimate, 

TREXMO+ calculates exposure for three REACH models: ART, SM, and TRAv3. 

Furthermore, the model incorporates an RT algorithm to account for different performances 

of these individual models for different exposure conditions. This concept, in which three 

existing models are used only as exposure predictors of another model, was expected to 

perform better than the predictor models alone. A small fraction (20%) of the measured data 

was used to test the performance of TREXMO+ and confirmed this hypothesis. For all tested 

criteria, including residuals, bias, accuracy, and regression, TREXMO+ led to improved 

results over the three REACH models considered.

RTs and regression coefficients

The splitting criteria in the established RTs, which were the ART exposure parameters, were 

in accordance with the results in Savic et al. [19]. Those authors reported that the parameters 

of substance properties (such as VP or dustiness), activity type (such as spraying), and local 

control have the most significant influence on determining measured exposure levels. 

Moreover, a sensitivity analysis [28] and a computational comparison [19] have also shown 

that these parameters affect most the final models’ predictions and the differences among the 

predictions of ART, SM, and TRAv3. Regarding the RTs established for different exposure 

types, the most binary splits (three) were obtained for volatile liquids. This was driven by 

three factors: data size, variability between ESs, and how well the exposure parameters 

account for the variance in the measurements. Nearly 65% of the exposure data in this study 

addressed the exposure to volatile liquids. The given ESs for liquids covered a wide range of 

different exposure conditions. For example, the data included substances with VPs from 18 

Pa to 59 kPa. Also, all activity (sub)classes of ART were covered. A smaller amount of data 

and less variable ESs led to a smaller RT (that is, two splits) for powders, in comparison 

with liquids. The RT did not branch further to include splits for different activities and local 

controls. Finally, the training data, on which the RTs were based, included only 19 ESs for 

solids. These data were insufficiently different to result in a significant binary split. Almost 

all ESs (18 of 19) addressed exposure to wood dusts with the contaminant concentration of 

100%. Almost half of these ESs included no local control, whereas exposure in the other 

half was controlled with on-tool extraction.

In some cases, the binary splits in Fig. 2 were not in accordance with the dimensionless 

scores assigned to the parameters of ART. It is expected that exposure parameters with 

substantially different scores would be classified in different nodes. However, the extremely 
fine dust (score = 1.0) category appeared in the same node as firm granules (score = 0.01) 

instead with fine dust (score = 0.3). The explanation for this can be found in Savic et al. 
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[13], where the same SUVA data were used to investigate the performance of ART. In that 

publication, the authors stated that where the raw data were unclear, the most conservative 

parameters were assigned. This means that most likely the selection of extremely fine dusts 
was too conservative. A more appropriate parameter would be coarse dust for the ESs with 

extremely fine dust.

This study also found strong collinearity between ART and SM for certain exposure 

conditions (Table 3). For these two exposure models, similar results were obtained in our 

previous, in silico, study [19]. These results could be explained by the fact that both ART 

and SM follow the same source-receptor approach. Also, this could mean that there is some 

overlapping between the exposure data used to develop these models.

Model validation

Overall, the results showed that TREXMO+ is less biased and more accurate. The estimates 

of this model better explained the variance (that is, higher R-squared) of the measurements. 

Somewhat higher underestimations and lower accuracy were found when ML alone was 

used to predict the exposure. This was the least noticeable for solids, for which no binary 

split was obtained. However, it is difficult to imagine how the two approaches will differ as 

more data becomes available. Moreover, the relatively small data size and the similarity 

between the exposure conditions (both from SUVA and NIOSH) in the training and testing 

datasets might have biased the final results and conclusions.

For all three exposure types considered, the correlation between TREXMO+ and the 

measurements was significant at the 95% confidence level. This was not the case, however, 

for the REACH models for powders and solids, for which only TRAv3 had a significant 

correlation with the measurements. The three REACH models were found to overestimate 

the measurements. For liquids (excluding SM) and powders, these models were too 

conservative. With relative bias between 300 and 1000%, powders were the most 

overestimated. Such overprotectiveness might obscure the practical use of these models.

Conversely, TREXMO+ underestimated the measurements. The extent of these 

underestimations (that is, the magnitude of absolute value of relative bias) was small, as 

compared with the overestimations obtained for the REACH models. Overall, TREXMO+ 

was thus the least biased model, a determination which was the goal of this study. This 

model was more biased than SM only for liquids. According to Eq. 3, bias is a measure of 

the average difference between the modeled and measured exposures. If, for example, the 

number and extent of over- and underestimates is equal, then the bias in Eq. 3 equals zero. 

However, this does not mean that the model is not locally biased (e.g., for lower exposures). 

A better representation on how a model performs locally was thus obtained with LOWES 

smoothing of the residuals in Fig. 3. For liquids, the residuals for TREXMO+ were closer to 

the measured exposure over the measurements range. For SM, however, the extent of 

overestimation of lower exposures and underestimation of higher exposures was greater than 

for our model. The results for accuracy confirmed these findings. It was shown that the 

estimates of TREXMO+, on average, differ only two to three times from the GM of the 

measured exposures.
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Regarding the relationship with the measurements, only the estimates of TREXMO+ were 

significantly correlated with all three exposure types considered. For powders and solids, 

SM and TRAv3 (only for powders) were even negatively correlated. However, this may be 

due to the relatively small number of measurements in the testing data, which were also the 

most distributed within a small range (0.1–10 mg/m3).

The recommendations on the risk management measures that should be communicated down 

the supply chain when assessing the exposure by using TREXMO+ should be the same as 

with ART. This is because the users of TREXMO+ will require the same exposure 

information in TREXMO+ as in ART. Another reason is that, regarding its concept, 

TREXMO+ is expected to calculate values that could be seen as tier 2 estimates.

Limitations

Two major limitations of this study were the amount of data and the reliability of the 

established exposure parameters for ART. As already mentioned, most of the ESs addressed 

exposure to volatile liquids. Although for this exposure type, 37 different ESs were used to 

investigate the performances of TREXMO+, only 14 powder ESs and 5 solid ESs were in 

the testing dataset.

Regarding the quality of information in the two exposure databases, it was more likely that 

erroneous selection of input parameters for ART occurred when interpreting the SUVA 

dataset. This statement is drawn from the fact that only two assessors (one expert and one 

trainee) interpreted the raw SUVA data. The input parameters for the NIOSH database were 

coded based on the consensus between six assessors from different agencies [15]. 

Nevertheless, this might create a space for mistakes that could lead to, for example, 

miscoding of the dustiness categories.

In addition, the current version of TREXMO+ predicts only the GM exposure values, while 

the 90th percentile is used under REACH for risk characterization [1]. When more data 

becomes available, required statistical analyses will be conducted to provide the parameters 

for the calculation of higher percentiles in TREXMO+.

Conclusion and outlook

Compared with the three REACH models, TREXMO+ performed better with regard to bias, 

accuracy, and its correlation with measurements. The most important outcome is that the 

model’s predictions differ only by a factor between 2 and 3 in comparison with 

corresponding exposure measurements, relatively smaller than factors of the three REACH 

models. The small testing dataset, however, might raise concerns on the validity of these 

results, especially for powders and solids. More exposure data will thus be needed to further 

test the performances of TREXMO+ or refine its algorithm. It is important to note that a 

future refinement of any of the predictor models will also improve the predictions of 

TREXMO+.

The new model solves the problem with the multi-models approach recommended in Savic 

et al. [20], in which several exposure estimates are calculated for the same ES. Instead of the 
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three or more exposure values calculated from REACH models, which may differ by several 

orders of magnitude [19], TREXMO+ provides a single, refined estimate that corresponds 

the most to given exposure conditions.

TREXMO+ is not limited to the three REACH models (see Eq. 1) and its input parameters. 

Estimates of other exposure algorithms, such as physical-chemical models, could be 

considered in the future for inclusion in TREXMO+. Furthermore, regarding the limited 

exposure data that was available for this study, the classification layer identified only the 

exposure parameters of the three REACH models as significant for the exposure assessment. 

It is, however, important to mention that with more exposure data available, other variables, 

if found significant, could be used to extend Eq. 1.

By the end of 2019, TREXMO+ will be available as a user-friendly web-application. The 

corresponding URL address will be shared with all current users of TREXMO v2 and added 

to the Google search engine. This publicly available freeware will include all data in the 

SUVA and NIOSH datasets.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Schematic illustration of TREXMO+ algorithm and a regression tree example.
a - TREXMO+ algorithm and b - regression tree.
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Fig. 2. Regression trees established for the evaluated exposure forms.
a Volatile liquids and b powders.
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Fig. 3. Residuals obtained for the training and testing dataset for the three exposure types.
The LOWESS method was applied to plot data points as smoothed lines for the four 

exposure models.
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Fig. 4. Measured versus modeled exposure values for three different exposure types.
Red dotted lines (for ART and the inner dotted lines for TREXMO+) illustrate the 90% 

confidence intervals, whereas the blue dotted lines (only for TREXMO+; the outer lines) 

illustrate the prediction interval.
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Table 4

Relative bias and accuracy of the three REACH models, the machine-learning algorithm only and TREXMO+.

Model Relative bias (%) Accuracy

Liquids Powders Solids Liquids Powders Solids

ART 86 1004 −57 1.00 0.85 0.61

SM 9 325 −34 0.66 0.63 0.53

TRAv3 410 818 171 1.16 1.04 0.45

ML −49 −90 −66 0.61 0.58 0.34

TREXMO+ −41 −24 −30 0.46 0.48 0.31
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Table 5

Regression coefficients obtained for the models.

Exposure type (ES
b
/ EM

c
) Model Intercept (a) Slope (b) R2 p value

Liquids (185/742) ART 0.47 0.38 0.20
4.6e-9

a

SM −0.13 1.09 0.34
1.2e-15

a

TRAv3 0.03 0.55 0.15
2e-6

a

TREXMO+ 0.18 0.92 0.41
<2e-16

a

Powders (69/153) ART −0.41 0.37 0.06 0.16

SM 0.06 −0.18 0.01 0.63

TRAv3 0.86 −0.97 0.49 0.47

TREXMO+ 0.12 0.87 0.65
<2e-16

a

Solids (24/57) ART 0.50 0.16 0.05 0.55

SM 0.56 −0.08 0.01 0.86

TRAv3 −0.43 1.00 0.94
<1e-5

a

TREXMO+ −0.7 3.01 0.68
0.01

a

a
Statistically significant at the 95% confidence level.

b
Number of exposure situations.

c
Number of exposure measurements.
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